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Pseudo-Casimir force in confined nematic polymers
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Abstract. – We investigate the pseudo-Casimir force in a slab of material composed of
nematically ordered long polymers. We write the total mesoscopic energy together with the
constraint connecting the local density and director fluctuations and evaluate the corresponding
fluctuation free energy by standard methods. This leads to a pseudo-Casimir force of a different
type than in the case of standard, short-molecule nematics. We investigate its separation
dependence and its magnitude and explicitly derive the relevant limiting cases.

Casimir effect is due to constrained fluctuations in media with long-ranged correlations [1].
The physical nature of the medium is not particularly important. Though the standard
Casimir effect has been introduced for constrained electromagnetic-field fluctuations, it has
been realized that other systems with long-range correlations exhibit a similar type of fluctua-
tion-driven interactions. Most notably critical fluids [1], smectic manifolds [2] and liquid
crystals [3], all of them being prime examples of correlated fluids, give rise to a pseudo-
Casimir effect which comes about through constrained thermal (as opposed to quantum)
fluctuations of order parameters. The nature of these order parameters of course depends on
the system under study but they all exhibit massless fluctuation spectra that eventually lead
to long-ranged fluctuation interactions.

Limiting ourselves to the case of liquid crystals, the pseudo-Casimir effect has been re-
searched in nematic, smectic and columnar uniformly ordered systems [3]. In the case of
inhomogeneous or frustrated order as in the case of the hybrid-aligned cell characterized by
opposing surface fields or in the Fréedericksz cell where frustration arises from competing bulk
and surface fields [4], the interaction induced by director fluctuations is enhanced substantially
by frustration, the enhancement being progressively stronger as the system approaches the
transition from uniform to distorted structure.

There might be some experimental evidence that backs up these theoretical predictions [5]
but we still lack a definitive experimental observation of the pseudo-Casimir interaction. It
appears, however, that in the case of spinodal dewetting of 5CB on a silicon wafer [6] the
pseudo-Casimir interaction is essential in giving a consistent interpretation of experimental
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data, implying that this experiment can be regarded as the first observation of pseudo-Casimir
effect in liquid crystals [7].

In this contribution we shall investigate the pseudo-Casimir effect in the realm of confined
polymers. As a case study we will take a nematic polymeric liquid crystal such as one can
observe in stiff polyelectrolytes above the isotropic-nematic transition, confined between two
apposed planar surfaces. A physical realization of this case would be a nematically ordered
DNA confined between two surfaces or simply cut to form a slab of macroscopically oriented
sample [8] as is usually done in experiments with wet-spun DNA. We believe that this case
is particularly instructive since we will be able to connect different limiting results with the
existing calculations for ordinary, i.e. short chain, nematics [3]. It will be shown that the
polymeric nature of the nematogens gives rise to additional features of the pseudo-Casimir
effect that distinguish it qualitatively from results derived in the case of short nematogens.
Also we will show that in the case of nematic polymers the pseudo-Casimir interaction depends
on the equation of state [8] of the polymer nematic through its osmotic compressibility.

The elastic deformation of an ordinary short-molecule nematic [9] with long-range orien-
tational order along the z-axis, can be described with an average director n(r), with small
fluctuations in the (x, y)-directions: n(r) � (1, δnx(r), δny(r)). In this case, if the splay,
twist and bend elastic constants are the Frank constants K1, K2 and K3, one obtains for the
mesoscopic elastic Hamiltonian

Hn[δn(r)] =
1
2

∫
d2r⊥dz

[
K1 (∇⊥ · δn)2 +K2 (∇⊥ × δn)2 +K3 (∂zδn)2

]
. (1)

Besides fluctuations in nematic director, one should also consider fluctuations in the local
density of the molecules. For short nematogens the director and density fluctuations are
decoupled and one need not consider this part of the mesoscopic free energy explicitly. For
long, polymer nematics the situation is altogether different. In this case we have to consider
the part of the free energy due to nonhomogeneous density fluctuations ρ(r) � ρ0 + δρ(r) in
the Ornstein-Zernicke form

Hρ[δρ(r)] =
1
2

∫
d2r⊥dz

[
B

(
δρ

ρ0

)2

+Bξ2
(∇δρ
ρ0

)2
]
, (2)

where B is the osmotic compressibility modulus and ξ is the density correlation length. Be-
cause polymers are here considered to be infinitely long, one also has to take into account the
fact that director inhomogeneities can relax only if accompanied by the simultaneous density
relaxation [10]. This leads to the constraint

0 = ∇ (ρn) � ∂zδρ+ ρ0 (∇⊥ · δn) . (3)

Adding all the components of the mesoscopic free energy and taking the constraint equation (3)
into account via a coupling constant, we obtain

H = Hn[δn] +Hρ[δρ] +
1
2
C

∫
d2r⊥dz (∂zδρ+ ρ0 (∇⊥ · δn))2 . (4)

In general one can show [11] that the coupling constant equals C = kT�/2ρ⊥, where ρ⊥ is
the average polymer density perpendicular to the nematic director and � is a typical length
of the polymers. For intrinsically stiff polymer chains like DNA, one can safely take C → ∞
in accord with more microscopic calculations (see the discussion of this point in [11]).
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Writing δn in the Helmholtz ansatz δn = δn‖ + δn⊥, we realize that the tangential part
of the Hamiltonian is decoupled from the constraint eq. (3), giving the same contribution to
the fluctuational free energy as in the case of short nematics [3].

Obviously in the case of polymer nematics the longitudinal director and the density field
fluctuations are coupled. The fluctuational free energy is now obtained via

F = −kT lnZ = −kT ln
∫

δn(∂)=0

Dδn
∫

δρ(∂)=0

Dδρ exp [−βH], (5)

where we have assumed that at the boundary of the sample the fluctuations in density and
director field are quenched (i.e. δn(∂) = 0, δρ(∂) = 0). In principle one could also introduce
the anchoring and tension energy of the bounding surfaces which would not bring any new
qualitative features into our discussion but would make the computations less transparent.

We now analyze the fluctuational free energy of a slab of nematic material bounded at
z = ±L/2 where the average director is aligned with the z-axis. In the case of short nematogens
(C = 0) the free energy decouples and we obtain two contributions: a long-range pseudo-
Casimir free energy due to director fluctuations and a short-range term due to screened density
fluctuations. Thus

F(C = 0) = −kTS
16π

(
K3

K1
+
K2

K1

)
ζ(3)
L2

− kTS
16π

ε(L/ξ)
L2

, (6)

where S is the area of the surface, ε(x) =
∫ ∞

x
u du ln (1− e−u) and ζ(n) Riemann’s Zeta

function. Since L/ξ � 1 and the function ε(x) has an exponential behavior for large values of
the argument, the density fluctuations make a negligible contribution to the total free energy.
Our result thus evidently reduces to the one obtained by Ajdari et al. [3].

In the case that the director and density fluctuations are coupled the calculation of the
functional integral equation (5) becomes more complicated. First of all, we transform the
Hamiltonian equation (4) by introducing

δρ = ρ0 (∇⊥ · a + f) , δn = −∂za = −ȧ . (7)

The coupling term in this case reduces to

C (∂zρ+ ρ0∇⊥ · δn)2 → Cρ20 (∂zf)
2 = C ′ḟ2 (8)

and the Hamiltonian is

H =
1
2

∫
d2r⊥dz

[
K3ä

2 +K1 (∇⊥ȧ)2 +B (∇⊥a + f)2 +Bξ2 (∇⊥(∇⊥a + f))2 +

+Bξ2
(
∇⊥ȧ + ḟ

)2

+ C ′ḟ2

]
. (9)

Clearly in the limit of C −→ ∞, f becomes independent of z, thus ḟ = 0. In this case we
can introduce the following linear transformation:

a −→ a + ∇⊥A , ∇2
⊥A = −f, (10)

obtaining finally for the Hamiltonian in the limit of strong coupling

H=
1
2

∫
d2r⊥dz

[
K3ä

2+K1 (∇⊥ ·ȧ)2+B (∇⊥ ·a)2+Bξ2 (∇⊥(∇⊥ ·a))2+Bξ2 (∇⊥ · ȧ)2
]
. (11)
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Since a is a longitudinal vector (eq. (7)), one obtains in the Fourier space

H =
1
2

∑
Q

∫
dz

[
K3ä‖

2 +
(
K1 +Bξ2

)
Q2ȧ‖

2 +B
(
1 + ξ2Q2

)
Q2a2

‖

]
. (12)

The mesoscopic Hamiltonian obviously corresponds to a persistent oscillator, i.e. an oscillator
with an additional fourth-order term in the derivatives. Since the different Fourier components
are decoupled, the evaluation of the functional integral proceeds straightforwardly and can
in fact be reduced to a Feynman integral for second-derivative Lagrangian solved exactly by
Kleinert [12]. Taking into account the boundary conditions for the fluctuating fields, we obtain
up to a multiplicative constant

Z=ΠQ
(2πkT )−1√ω1ω2|ω2

1−ω2
2 |(ω2

1+ω
2
2)

−1

sinh(ω1K
− 1

3
3 L)sinh(ω2K

− 1
3

3 L)− 2ω1ω2
(ω2

1+ω2
2)
(cosh(ω1K

− 1
3

3 L)cosh(ω2K
− 1

3
3 L)−1)

, (13)

where

(ω2
1 + ω2

2) =
1
2

(
K1 +Bξ2

)
Q2K

−1/3
3 ,

(ω1ω2)2 = B
(
1 + ξ2Q2

)
Q2K

1/3
3 . (14)

Introducing now Ω± = K−1/3
3 (ω1 ± ω2) and with

Ω2
±(Q) =

K1 +Bξ2

2K3
Q

[
Q± 4Λ

√
1 + ξ2Q2

]
, (15)

where

Λ =
√
BK3

K1 +Bξ2
, (16)

we obtain, for the regularized fluctuation, the free energy per unit area, where the formally
divergent bulk and surface free-energy terms have already been subtracted:

F =
kTS

4π

∫ ∞

0

QdQ ln
(
1− 2

Ω2
+

Ω2−
e−Ω+L

[
cosh(Ω−L)−

Ω2
+ − Ω2

−
Ω2

+

]
+ e−2Ω+L

)
. (17)

In the above equations Ω2
− can become negative for sensible values of the correlation length

ξ. In this case the coshΩ−L has to be replaced by cos |Ω−|L but the integral contains no
dangerous divergencies and can be evaluated straightforwardly. By introducing

F∗ =
kTS

4π
Λ2 and L∗ =

√
2(K1 +Bξ2)

B
, (18)

we realize that the dimensionless free energy F/F∗ obtained from eq. (17) depends only on
the dimensionless separation L/L∗ and the dimensionless coupling constant γ = Λξ. This
coupling constant basically represents the ratio between the density correlation length ξ and
the polymer nematic correlation length perpendicular to the average director Λ−1 [8].

In order to estimate the magnitude of the pseudo-Casimir forces in confined nematic poly-
mers, we now have to connect the macroscopic elastic constants K1,K3, B and the correlation
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Fig. 1 – The dependence of the dimensionless free energy F
F∗ on the dimensionless separation L

L∗
obtained from eq. (17) for different values of the coupling constant γ. The two scaling regimes at
small and large L

L∗ are clearly visible.

length ξ with the microscopic interaction parameters of the systems. This is in general a very
difficult undertaking. For DNA this type of analysis has been performed in [8,13] and we use
these results in what follows.

If the interaction potential between the segments of the polymers is U(D), where D is the
average spacing between the molecules perpendicular to the average director and the intrinsic
persistence length of the polymers is LP, one has [8]

K1 = K2 � U(D)/D ,

K3 � kT LP ρ⊥ + U(D)/D ,

B �
√
3
4

(
∂2

∂D2
− 1
D

∂

∂D

)
U(D)/LP . (19)

One should realize here that since DNA is a polyelectrolyte, the interaction potential U(D)
is composed of two additive parts: the short-ranged hydration part and the longer-ranged
screened Coulomb part (for details see [8]). The latter of course depends on the ionic strength
of the bathing solution. Both contributions to U(D) decay exponentially with D [8], but with
different decay lengths.

The above scaling of elastic constants leads to the conclusion that K2
K1

∼ 1 and K3
K1

� 1,
the latter due to the fact that DNA has an intrinsic elastic modulus that contributes a term
independent of U(D) to K3, see eq. (19).

Figure 1 presents a plot of the dimensionless free energy as a function of dimensionless
separation. The curves are plotted for various values of the coupling constant γ which is
plotted as a function of the average spacing between polymers in fig. 2 for the case of DNA.
One can clearly discern two regions with approximately L−2 and L−4 behavior separated by a
characteristic spacing L0 = C(γ)L∗, where C(γ) is a numerical factor depending on the cou-
pling constant that can be read off fig. 1. The characteristic spacing L0 grows approximately
linearly with the average separation between the polymers D, ranging from about 20 nm at
D = 2 nm to around 150 nm at D = 8 nm, which amounts to between one and two correlation
lengths ξ [13].
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Fig. 2 – The dependence of the magnitude of the pseudo-Casimir interaction F∗, the characteristic
length L∗ and the coupling constant γ on the average separation between the polymers obtained
via the interaction potential U(D) and ξ taken from [8, 13] in the case of 0.5 M NaCl bathing ionic
solution. Note that γ and F∗ have the same scale. L∗ saturates for small values of DNA density
(large D) at about 140 Å.

Figure 2 shows the dependence of the magnitude of the pseudo-Casimir interaction F∗,
the characteristic length L∗ and the coupling constant γ on the average separation between
the polymers obtained from the measured equation of state for DNA in the case of 0.5 M
bathing solution of NaCl (for details see [8]).

One would of course like to have also approximate analytical formulae for the pseudo-
Casimir interaction eq. (17). There are only two limiting cases where the integral in eq. (17)
can be evaluated analytically, the large-separation and the small-separation regime. First of
all for small L the dominant behavior of the integral is obtained at large Q leading in this
case to

F(L� L0) = − kTS

16πL2


 K3

K1 (1 + 4Λξ) ·
(
1 + B

K1
ξ2

) +
K2

K1


 ζ(3). (20)

Thus F(L � L0) depends on L just as in the case of a standard nematic [3]. Its magnitude
can, however, in the case of small polymer density or equivalently large D (small K1,K2), sub-
stantially exceed the pseudo-Casimir force in standard nematics due to the intrinsic stiffness
term in the elastic constant K3, eq. (19). In this case

F(L� L0;K1,K2 → 0) = − kTS

64πξL2

√
K3

B
ζ(3). (21)

Also because for L� L0 the L dependencies are the same, it is reasonable to compare the
pseudo-Casimir interaction with the van der Waals interaction. From eq. (20) one can show
that their ratio scales approximately as F(L � L0)/FvdW � (K3kT/K1H) for large D and

as �
√

K3
B (kT/Hξ) for small D. H is the Hamaker constant. In the case of an intrinsically

stiff polymer such as DNA with K3 as in eq. (19) both of these ratios are much larger than 1.
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The other analytically tractable limit is in the case of large L where the dominant contri-
bution to the integral comes from small-Q behavior of the integrand

F(L� L0) = − kTS

16π

[
2K3ζ(5)
BL4

+
K2ζ(3)
K1L2

]
, (22)

where the length scale L0 can be read off the graph in fig. 1 for various values of γ (see above).
For large L the dependence of the pseudo-Casimir interaction free energy on L is altogether
different, deviating essentially from the standard nematic case. The crossover between the
two regimes moves to larger L as the polymers become less dense (see fig. 2) but eventually
saturates for small polymer densities.

The pseudo-Casimir interaction for long nematic polymers thus differs qualitatively from
the one obtained in the case of short nematics [3]. Though it still decays algebraically with L,
and thus qualifies as a long-range force, it decays asymptotically faster (L−4) than in the case
of short nematics (L−2). Nevertheless its absolute magnitude can, depending on the polymer
density and the regime of spacings L, become comparable to and even much larger than that
in the case of short nematics with numerically comparable Frank constants (though possibly
stemming from different microscopic interactions). The L−4 behavior stems essentially from
the polymer stiffness and should thus be a salient feature of the pseudo-Casimir interactions
whenever the mesoscopic Hamiltonian contains the squares of higher than the first derivatives
in the order parameter. These types of systems will be studied in our future work.

∗ ∗ ∗
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